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Does Frequent Low Resolution Feedback Outperform
Infrequent High Resolution Feedback for Multiple

Antenna Beamforming Systems?
Taejoon Kim, Student Member, IEEE, David J. Love, Senior Member, IEEE, and Bruno Clerckx, Member, IEEE

Abstract—Multiple antenna systems that adapt to the channel
conditions are known to provide numerous rate and reliability
benefits. In frequency division duplexing, the transmitter typically
learns about the channel conditions using a small amount of
feedback (called limited feedback) sent on the reverse link. While
feedback is well studied, there has been only limited work ad-
dressing how feedback techniques should be modified depending
on the amount of mobility. This paper concerns a signaling scheme
for limited feedback multiple antenna wireless communications
taking the temporal correlation into account during feedback de-
sign. We refer to this as using an adaptive feedback period (AFP)
scheme. In the AFP scheme, the transmitter and receiver reuse the
past channel state information (CSI) as side information. Feed-
back to be used for several channel uses is sent from the receiver
to the transmitter using a predetermined feedback update period.
The feedback update period is determined by characterizing the
temporal correlation statistic, so that the proposed AFP scheme
outperforms the traditional limited feedback approach, which
we refer to as the minimal feedback period (MFP) scheme. To
measure the performance, the average effective SNR is considered.
Bounds on the feedback update period, correlation coefficient, and
feedback rate needed for the AFP scheme to outperform the MFP
scheme are derived. Moreover, criteria to initiate the control of
the feedback update period are obtained. Results on the average
effective SNR are used to develop bounds on the feedback update
period using the capacity loss. It is also shown that in the large
system limit the feedback update periods required for both the av-
erage effective SNR and capacity loss converge to the same bound.
These results verify that infrequent high resolution feedback is
sometimes preferable to frequent low resolution feedback.

Index Terms—Adaptive feedback rate, adaptive feedback up-
date period, multiple-input single-output (MISO) channel, quan-
tized beamforming, temporally correlated channel.

I. INTRODUCTION

A S next generation multiple antenna standards evolve,
closed-loop systems that adapt the transmitted signal to

channel state information (CSI) are growing in popularity be-
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cause of their many benefits [1]. Because most cellular systems
employ frequency division duplexing, CSI is often practically
and efficiently obtained from the remote receiver through a
digital or analog feedback link. Arguably the most practical
approach to conveying this feedback is to use quantized (or
limited) feedback. Recently, limited feedback multiple antenna
systems have evolved into a key technique for next generation
and beyond (i.e., 4 G and beyond) broadband wireless standards
(e.g., see the references in [1]).

When the partial CSI is delivered to the transmitter through a
finite rate feedback link, transmission schemes that utilize lim-
ited feedback as side information show improved performance.
Feedback design for beamforming systems is the main focus
of [2]–[6]. Optimally quantized directional information of the
channel is conveyed to the transmitter, and the works in [3]–[6]
verify that the performance benefit arising from quantized
channel direction feedback is significant. In these works, code-
books are designed based on independent block fading channel
statistics, where the channel varies independently across the
temporal blocks.

Although the independent block fading model facilitates
the analysis and design of CSI feedback, it neglects to take
into account the substantial temporal correlation that is
usually present between samples of the multiple-input and
multiple-output (MIMO) channel random process. There are
several different feedback approaches [7]–[15] accommodating
temporal correlation during feedback design. In [7], a single bit
of sign feedback is employed to choose a direction of the sto-
chastic perturbation which provides an estimate for the gradient
vector to track the dominant channel subspaces. This stochastic
perturbation idea and insight from geodesic interpolation in the
Grassmannian manifold are extended in [8] where the improve-
ment of the tracking performance is achieved by modeling the
trajectory of the channel subspace variation as a geodesic on the
Grassmannian manifold. The idea of geodesic modeling on the
Grassmannian manifold is extended to a geodesic prediction
algorithm in [9]. The channel subspace tracking problem is
investigated in the context of successive codebook adaptations
[10]–[14]. Flexible codebook switching approaches, where the
codebook is switched in a supercodeset in order to track the
observed channel variations, are proposed in [10]. Similarly,
a spherical cap codebook switching algorithm using a code-
book chosen in a supercodeset is considered in [11]. Based on
a probabilistic model of the feedback state transition, a local
codebook transition approach is proposed in [12] and [13]. Note
that [12] and [13] require less feedback overhead than [10], [11]
because the codebook switching follows a predefined algorithm
based on the state transition statistics, while [10] and [11]
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need additional feedback to notify the index of the codebook
whenever switching is required. Differential feedback, where
the amount of the perturbation added to the previous precoder
is determined by the statistics of the directional variation, is
also considered in [14]. In [15], quantized CSI is modeled by
a feedback-state Markov chain and the information rate of the
CSI quantizer and effect of feedback delay are analyzed.

The time correlated channel can be effectively modeled as
a first-order Gauss-Markov process that describes the current
channel realization as dependent on the previous channel real-
izations, which more closely models the real channel. By em-
ploying a first-order Gauss-Markov process, conditions on the
input distribution achieving capacity in a temporally correlated
fading channel are studied in [16]. Using a first-order Gauss-
Markov fading model and the assumption of no instantaneous
CSI at the transmitter, it is shown in [17] that multiple antenna
systems utilizing correlation statistics to decode the signal out-
perform systems that do not adapt to the correlation in the high
SNR regime. The work in [10], [14] also employ the first-order
Gauss-Markov model.

In this work, we integrate temporal correlation into the feed-
back design and investigate how the feedback update period,
feedback rate, and average feedback overhead should scale with
temporal correlation in the beamforming systems. We attempt
to answer the question, “When using feedback for transmis-
sion over a temporally correlated channel, is it better to employ
frequent low resolution feedback or infrequent high resolution
feedback?” We show that infrequent high resolution feedback
sometimes can be preferable to high frequency low resolution
feedback. This analysis is performed using random vector quan-
tization codebooks [18] to allow analytical solutions.

In beamforming systems, it is known that the beamformer
must be chosen to maximize the effective SNR in order to mini-
mize the average BER and maximize the capacity [19], [20]. For
quantized beamforming systems, it is shown that the average ca-
pacity distortion can be upper bounded by the average effective
SNR distortion [4] implying that average effective SNR can be
used to characterize the capacity performance. Thus, following
the analysis in [2], [4], [6], and [21], we choose to use the av-
erage effective SNR as a performance metric to design the lim-
ited feedback system. Given these assumptions, we consider a
scheme where the previously fed back beamforming vector is
used as side information. This feedback occurs periodically ac-
cording to some feedback update period . Given a performance
threshold, a bound on the feedback update period is derived and
feedback update control criteria are characterized. To further in-
vestigate the influence of the temporal correlation, a bound on
the feedback rate (or codebook size) of the feedback update con-
trol scheme necessary to ensure a nontrivial update period is
derived. In addition, a closed-form expression for the average
effective SNR are used to develop approximated bounds on the
feedback update period for the capacity loss. To gain intuition
about bounds on the feedback update period for two different
performance metrics (i.e., effective SNR and capacity), large
system limit analysis is also performed.

This paper is organized as follows. In Section II, our system
model and problem statement are presented. Section III derives
bounds on the feedback update period and bounds on the feed-
back rate. In Section IV, asymptotic analysis is performed. Sim-

ulation results are given in Section V. Section VI provides some
concluding remarks.

Notations: denotes conjugate transposition, a bold lower-
case letter denotes a vector, denotes the element of a
vector , denote the vector 2-norm, denotes the log-
arithm with base , denotes the natural logarithm, and
denotes the gamma function.

II. SYSTEM OVERVIEW AND PROBLEM FORMULATION

A limited feedback multiple-input single-output (MISO)
beamforming system where the transmitter is equipped with

transmit antennas and the receiver has a single antenna is
considered. A unit norm beamforming vector (or beamformer)

at the channel instance is used to direct a
symbol to the receiver. The symbol has
for . The scalar received signal is represented by

(1)

where denotes the additive noise distributed according to
and represents the signal-to-noise ratio (SNR). Here,

the channel is a spatially uncorrelated flat fading
channel and assumed invariant within the channel use (i.e.,
block fading channel). Each channel use could actually repre-
sent a block of channels. The time evolution is modeled by a
first-order Gauss-Markov process [17]

(2)

The has i.i.d. entries distributed according to
and , where denotes

zero matrix. The noise process in (1) is assumed to be
independent of and , and is independent of for
all . Here, the coefficient quantifies the
amount of the correlation between elements and ,
and we assume all the elements of have the same time cor-
relation coefficient . The condition is the basic
assumption because the static case is unrealistic. The param-
eter can be selected to match the long term (e.g., second-order
or beyond) statistics of physical channel propagation models.
Using the popular Jakes’ statistical model for fading channel
[22] means that

(3)

where is the zeroth order Bessel function, denotes
the channel instantiation (or CSI feedback) interval, and

denotes the maximum Doppler frequency where
is the terminal velocity, is the carrier frequency, and

. The long term statistic is perfectly known
at the transmitter and receiver. Perfect CSI is available at the
receiver side, while the transmitter has partial CSI attained
from the reverse link (where the reverse link is error-free and
zero-delay). Throughout the paper, the directions of and

are denoted by and ,
respectively.

In the channel model in (2), we focus on the scenario when the
blocklength can span a large number of channel realizations. In
this scenario, we can deal with ergodic capacity. This will mean
that as gets closer to one the blocklength will have to increase.
However, our interest is on the practical case when there is a
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Fig. 1. Feedback frameworks for the MFP scheme and AFP scheme: up arrow
��� is used to indicate feedback update instance.

sufficient amount of mobility. This corresponds to the channel
with substantially less than one.

Now, we present two feedback frameworks. The first one is
a conventional limited feedback framework (e.g., [2]–[6]), and
the second one is the feedback resource reusing scheme that
can leverage the channel’s temporal correlation. For future ref-
erence, we call the first feedback framework the minimum feed-
back period (MFP) scheme and the second feedback framework
the adaptive feedback period (AFP) scheme.

1) MFP Scheme: At every channel instance , the receiver
uses a codebook where and
maximizes

A random codebook is used to allow tractable analysis. At every
, the random codebook is realized by choosing vectors

independently from the uniform distribution on the -dimen-
sional unit sphere. At the receiver side, the normalized effective
SNR is expressed by . Note that for the MFP scheme
the feedback update period is 1 and the average feedback over-
head is bits/channel use.

2) AFP Scheme: Similar to the MFP scheme, the
AFP scheme employs a random beamforming codebook

with . However, unlike the
MFP scheme, the AFP scheme feeds back a beamformer index
at every channel instance. Here, the positive
integer refers to feedback update period. Fig. 1 depicts the
feedback frameworks for the MFP and AFP schemes. The up
arrow symbol is used to indicate an instance of feedback
update. As can be seen from Fig. 1, at , the receiver of the
AFP scheme feeds back the best beamformer index by finding

and is used to transmit data at . The transmitter reuses
for channel instances to , which is rep-

resented in Fig. 1 by without from to .
From to , the normalized effective SNR at

the receiver side is . At , the receiver sends back
a new beamformer index by determining

and is reused during the next times of transmissions.
In the AFP scheme, the feedback is only available at every

channel instance. With this feedback setup, feeding back the
best index with respect to the channel and using to transmit
symbols for to can be justified by noting that
the best linear predictor for the channel (with ) that
the receiver can construct at is in minimum
mean square error (MMSE) sense. Using the model in (2), the
receiver knows that at the channel will evolve to
by adding white excitation to . The MMSE linear
predictor is of the form where . From
the MMSE criterion, can be constructed by finding such
that

It is well known that the optimal in MMSE sense is given
by where in [23]. Since

and , the optimal MMSE linear
predictor is given by . At , given

, the MMSE linear
predictor is found as . Repeated to , we
readily obtain . Then, the channel direction cor-
responding the MMSE predictors is com-
monly given by for time to . The beam-
former results by quantizing at .

The feedback update period of the AFP scheme is fixed
once online but can be adjusted offline to optimize some cri-
terion that depends on the amount of channel correlation. If the
channel fades slowly, the AFP scheme is amenable to control the
feedback update period to reduce the average feedback over-
head while maintaining the performance greater than or equal
to that of the MFP scheme. The benefits of the AFP scheme
compared to the MFP scheme can be measured by the average
feedback overhead and average performance. For this reason,
we only are interested in comparing the MFP and AFP schemes
when

(4)

In addition, we also must require that (or equivalently
). Note that the scenario when trivially leads

to the AFP scheme and MFP scheme being equivalent.
The main findings of our work are as follows: 1) for fixed
, (with ), and , we study what feedback update

period guarantees that the AFP scheme outperforms the MFP
scheme, 2) for fixed and (with ), we determine
the bound on guaranteeing that the AFP scheme dominates the
MFP scheme, 3) for fixed and , we first determine
and that maximize average effective SNR performance of
the AFP scheme given fixed average feedback overhead

constraint and then, bound on is found such that
the AFP scheme with and outperforms the MFP
scheme with , 4) for fixed and , we find the minimum
required (i.e., ) ensuring the update period is greater
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than or equal to a positive integer while maintaining
better performance than the MFP scheme. In general, we show
that the average feedback overhead can be reduced by sending
higher resolution feedback less frequently if the transmitter and
receiver are not too mobile.

III. BOUNDS ON FEEDBACK UPDATE

PERIOD AND FEEDBACK RATE

First, we derive bounds on the feedback update period for
the AFP scheme that ensure greater performance than the MFP
scheme. Then, conditions on the correlation coefficient and
the codebook size (feedback information rate of the AFP
scheme) where the AFP scheme is beneficial over the MFP
scheme in terms of the performance and average feedback over-
head are characterized.

A. Bound on Feedback Update Period

At the channel instance, the normalized average effec-
tive SNR loss between the AFP scheme and the MFP scheme is
defined by

(5)

where the equality in (5) is due to the independence between the
channel amplitude and the channel direction . Note
that .

Characterizing the feedback update period with in
(5) requires closed-form expressions for and

. To evaluate the quantity of the MFP
scheme, we use a random vector quantization result. It was
shown in [18] that

(6)

where is the beta function with parameter and . Inter-
estingly, a related closed-form result for of the AFP
scheme can be obtained.

Lemma 1: The quantity of the AFP scheme at the
channel instance is given by

(7)
Proof: See Appendix A.

When , it is apparent that the right hand side (RHS)
of (7) equals (6) with replaced by . Note that as ,

implying (7) converges to a random beam-
forming gain .

The quantity stands for the average
quantization error incurred by the random codebook with size

. This quantity has an equivalent product form

(8)

The details of (8) are provided in Appendix B. The equality
(8) explicitly shows that

and monotonically.

This product formulation is important because it allows us to
quantify the amount of gain obtained by adding one random
codeword to a random codebook.

Now, let us define and as

and

respectively, where and denote the average quantization
errors for the MFP and AFP schemes, respectively. Lemma 1
leads to a bound on the feedback update period .

Theorem 1: Given , the feedback update period for
the AFP scheme with random codebook must satisfy

(9)

to provide an average effective SNR gain greater than or equal
to the MFP scheme.

Proof: See Appendix C.
The equality in (8) implies that for , we

have a relation or equivalently
. As decreases (i.e.,

as increases), the quantity
increases. Thus, with fixed , it easily follows from Theorem 1
that in a highly correlated environment , the AFP scheme
can accommodate a large with . For example, if

, , , and , the upper bound in (9)
returns .

A random codebook is employed because of its analytical
amenability, and the MFP scheme is chosen to provide a rea-
sonable comparison to the AFP scheme. In practice, the random
codebook can be realized by sharing a common (and synchro-
nized) source of randomness for generating codebooks between
the transmitter and receiver. The value can be any value

that quantifies a threshold of the minimum perfor-
mance gain that the AFP scheme with feedback update control
can guarantee.

Consider a nonrandom and optimized (thereby fixed) code-
book obtained by minimizing the average quantization error,
i.e.

(10)

When a fixed and optimized codebook (e.g., Lloyd codebook
[2], [6], Grassmannian line packing [4], etc.) is used, the bound
in (9) can still serve as a guide to control the feedback update
period as shown in following Corollary.

Corollary 1: The bound on the feedback update period in (9)
is a sufficient condition for the feedback update period of any
optimized codebook in (10).

Proof: Denote as the
quantization error incurred by the optimized codebook with
size . Note that .
Since the average quantization error of an arbitrary codebook
is lower bounded by that of an optimized codebook, i.e.,

, taking expectation to



1658 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 4, APRIL 2011

both sides does not change the bound and results in .
This implies that with the threshold value we have

(11)
Thus, from (11), it is apparent that (9) is the sufficient condition
and can also be used to control the feedback update period for
the optimized codebook.

Note that the bound in (11) is in fact tight because the random
codebook performs measurably close to the optimized code-
book [24].

B. Bound on Correlation Coefficient

For fixed and (with ), in this subsection,
Theorem 1 is reproduced to characterize the conditions on the
time correlation coefficient that guarantee that the AFP scheme
requires a smaller average feedback overhead than the MFP
scheme while maintaining better performance than the MFP
scheme. This characterization readily results in a switching cri-
terion between the AFP and MFP schemes based on the time
correlation coefficient .

Lemma 2: The AFP scheme achieves a larger average beam-
forming gain and uses a lower average feedback rate than the
MFP scheme when the feedback update period satisfies

(12)

Proof: The upper bound follows from Theorem 1, and the
lower bound is due to the condition , which is

. Here, denotes the ceiling function.
Also note that if the feedback update period is chosen such as

, there is no benefit of using the AFP scheme
in terms of average feedback overhead, because no longer sat-
isfies (12). Thus, to investigate the operation of the AFP scheme,
given , we find a condition for the correlation coeffi-
cient ensuring . From Lemma 2, this con-
dition is equivalent to

which is

(13)

Now, combining Lemma 2 and (13) gives a criterion for con-
trolling the feedback update period.

Correlation Coefficient Criterion: For fixed and with
, the feedback update control for the AFP scheme

outperforms the MFP scheme in terms of the average effective
SNR performance and average feedback overhead when (12)
and (13) are satisfied.

This characterization specifies the minimum and maximum
feedback update periods that the AFP scheme can achieve, if
(13) satisfied. For instance, if , , and

, the AFP scheme shows better performance with smaller
average feedback overhead than the MFP scheme when

. If , the AFP scheme has the feedback update

period bound . If we change to
, the correlation coefficient criterion gives .

When , the AFP scheme can utilize a feedback update
period within .

C. Bounds on Codebook Size

The codebook size of the AFP scheme has a significant
impact on the average feedback overhead and performance.
Choosing a large gives a significant performance gain but
increases the average feedback overhead. A small decreases
the average feedback overhead while degrades the performance.
In this subsection, to find a tradeoff between the feedback rate

and the feedback update period , we first optimize
and so that the average effective SNR is maximized subject
to . Our solution is based on a lower bound on the
normalized average effective SNR gain where the bound allows
us to compute the optimal and in closed-form. Second,
we find the minimum possible value of such that the AFP
scheme with feedback update period outperforms the
MFP scheme and gives smaller average feedback overhead than
the MFP scheme.

1) Average Feedback Overhead Constraint: It is useful to
review the bound [24]

(14)

From (14), the lower bound of (7) follows

(15)

However, the lower bound in (15) can be a negative value, im-
plying it is not a properly defined quantity. Therefore, following
condition must be assumed

(16)

However, it can be readily shown that most of the feedback sce-
narios satisfy (16).

Lemma 3: If is chosen such that ,
the bound in (16) always holds.

Proof: Using , we further bound
(16) as , which is equivalent
to

(17)

Note that the RHS of (17) is an increasing function of .
Taking to both sides of (17) and using the defini-
tion lead to the bound

.
Remark 1: The bound in (15) is achieved as , and

the ratio converges to a bounded value. This is because
the lower and upper bounds in (14) coincide as ,
while maintaining to be bounded.
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Fig. 2. � obtained by maximizing the lower bound (19) versus Empirical
� obtained by monte carlo simulation so that (18) is maximized for� �

� and � � ��� �� ��.

With and , the closed-form expression
of in (7) and the lower bound in (15) are expressed
in terms of and , and denoted by

(18)

and

(19)

respectively. In addition, to satisfy the condition in Lemma 3
we assume that . The following lemma discusses
finding the maximizer of over .

Lemma 4: Given an average feedback overhead constraint
, the optimal that maximizes is

given by

(20)

Proof: See Appendix D.
With (20), the optimal feedback update period easily follows

that . However, depending on , , and
values, it is possible that value in (20) returns .
Note that implies , which is impossible. In this
trivial case, we choose and (i.e., it becomes the
MFP scheme). Fig. 2 displays and “Empirical ”.
The is obtained by (20) (with ) and “Empir-
ical ” is computed by monte carlo simulations so that (18)
is maximized given and . Although (20)
is based on the lower bound, it is suffice to claim the tightness
of (19) from Fig. 2.

In Lemma 4, and are determined based on the
performance of the AFP scheme. To characterize the benefits of
the AFP scheme compared the MFP scheme, given the condition
in (4) (i.e., ), we examine the condition for in

(20) that ensures larger average effective SNR gain of the AFP
scheme than that of the MFP scheme.

Theorem 2: The AFP scheme with in (20) and
provides a larger average effective SNR than the MFP

scheme with and satisfies if

(21)

where

Proof: See Appendix E.
The theorem establishes that if in (20) falls in the

bound in (21), the average effective SNR performance of the
proposed scheme always outperforms the MFP scheme with
nontrivial feedback update period.

Remark 2: From (20), it is easy to check that the limit ,
such that (with is bounded) implies that

, such that is bounded. Therefore,
from Remark 1, it is obvious that in (20) converges to
the quantity that maximize in (18) as , such
that . This also implies that approaches the
maximum of and indeed .

The in (20) is the quantity that maximizes the average
effective SNR gain. The in (20) grows large as so
that it gives . Thus, when , in (20)
gives an impractical large value. To put some number to (20),
if , , and , is given by 17.42 bits
with .

2) Minimum Codebook Size: In the following, we find the
minimum possible value of denoted by such that
given a positive integer and , the AFP scheme always
shows better average effective SNR gain than the MFP scheme
if and .

Theorem 3: For a positive integer and
where

(22)

if is chosen such that where

(23)
the AFP scheme with feedback update period yields a better
average effective SNR gain than the MFP scheme.

Proof: See Appendix F.
Theorem 3 shows how the minimum required feedback in-

formation rate of the AFP scheme should scale in terms of the
required feedback update period and the amount of time corre-
lation. When , the quantity inside of in (23) is ap-
proximated as

(24)

This indicates that in the slowly varying regime, the minimum
required feedback rate is not sensitive to the minimum
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required feedback update period . Thus, the AFP scheme
should beneficially use a large feedback update period when

. However, as , the term in (23) becomes
dominant and the quantity inside of in (23) is approxi-
mated as

(25)

Note that (25) follows from the facts that the term on the
numerator inside of scales linearly in (23) with
the term, but the term on the denominator inside
of is negligible as .

When , in (22) goes to infinity and becomes
unconstrained. Thus, given a fixed and , from (24)
and (14), it is not difficult to see that there exists slightly
greater than ensuring . To put some numbers to (22)
and (23), if , , and , is given by 11
bits. If , then (i.e., ).
In this case, by designing the feedback with and

channel uses, the AFP scheme can operate with av-
erage feedback overhead 0.8 bits/channel use and outperform
the MFP scheme which has an average feedback overhead of 4
bits/channel use. Compared to and found by The-
orem 2 where with , , , and ,
it returns and , finding the
minimum required and gives practical insight for con-
trolling feedback.

D. Capacity

As well as effective SNR, capacity is also an important quan-
tity to measure the performance and is closely related to the ef-
fective SNR performance. The average capacity difference be-
tween the MFP and AFP schemes is given by

(26)

For the quantized beamforming system, a closed-form expres-
sion for the average capacity is challenging if not impossible to
determine. In this subsection, we deal with the nonasymptotic
behavior as a function of the feedback update period. To provide
a rule of thumb for controlling the feedback update period, note
that a lower bound on is

(27)

where (27) follows from the bound for
and . Note that the bound in (27)

gives a sufficient condition on the feedback update period. The
distortion in (27) can then be further analyzed at both low and
high SNR.

At low SNR, (27) becomes

(28)

The expression in (28) implies . There-
fore, Theorem 1 characterizes a sufficient condition for the feed-
back update period necessary for capacity performance of the
AFP scheme to meet or exceed capacity performance of the
MFP scheme at low SNR.

Using (27) and high SNR analysis, we further get

(29)

where in (29) we use the expansion
for and take the first three terms

, which is accurate when
is close to 1. Thus, the optimization problem is formulated as

(30)

After manipulating (29) with the constraint and
, a bound on the feedback update period at high SNR

is

(31)

Comparing the bounds in (9) and (31), if
(i.e., ), the bound in (31) yields a smaller max-

imum update period than the bound in (9). This implies that if
, the AFP scheme operating in the high SNR regime

yields a smaller maximum update period than the AFP scheme
operating at low SNR. The condition is always satis-
fied if . To see this, consider the upper bounds

. The
bound indicates that for any

, is always upper bounded by (i.e., ).
Thus, given , a sufficient condition on the feed-
back update period to guarantee that the AFP scheme provides
a larger ergodic capacity than the MFP scheme is given by (31).

IV. ASYMPTOTIC ANALYSIS

For the case of effective SNR, it was possible to derive
closed-form expressions and characterize the behavior of the
AFP scheme with different feedback design parameters (e.g.,
feedback update period, time correlation coefficient, and re-
quired feedback rate). However, for the capacity criterion, only
approximated bounds have been considered. In this section,
bounds on the feedback update periods for the two performance
(capacity and effective SNR) criteria are evaluated in the large
system limit as the number of antennas and feedback bits
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tend to infinity while maintaining fixed ratio .
For notational simplicity, we drop the subscript on of the
AFP scheme. The dropped subscript will reappear at the end of
the section. The purpose of asymptotic analysis is to provide
practical insight rather than an implementation framework.
The presented analysis provides the convergence trends of
the feedback update period associated with the two different
metrics. Simulation results provided in Section V demonstrate
that these asymptotic trends are actually quite relevant even
for reasonable numbers of antennas and feedback bits. It is
shown that the update period bounds for the two criteria indeed
converge to the same bound in the large system limit. To
verify this, we first characterize the convergence rule of the
instantaneous beamforming gain of the AFP scheme in the
large system limit. Then, this result leads to the convergence of
the two performance criteria.

For a size random vector codebook
with isotropically distributed

and , the distribution function of is given by
[4]

Letting , the distribution function of the max order
statistic is

(32)

Now, the limiting behavior of as is of
interest.

Lemma 5: As , while maintaining ,
the distribution function in (32), converges pointwise
to

if
if
if

(33)

Proof: See Appendix G.
Note that the convergence in (33) is

pointwise because of the single discontinuity at .
Obviously, on the open intervals and

, the convergence is uniform. In Fig. 3, the
distribution function (32) is displayed for
with ratio . As can be seen from Fig. 3, the prob-
ability of tends to concentrate around
as .

The bound in (14) reveals that as , with
, converges to . The fact
and the limiting distribution in Lemma 5 together claim

the convergence of the random variable as ,
.

Lemma 6: If , with , then con-
verges as [25]

(34)

in mean-square sense.

Fig. 3. Cumulative distribution function (CDF) of � ��� in (32) for � �
�� �� ������ such that � � � ��.

While the derivation for (34) in [25] relies on extreme order
statistics, this result can be tractably verified using Lemma 5, as
provided in Appendix H.

Characterizing the feedback update period for the AFP
scheme in the large system limit requires analysis of the be-

havior of as , .

Lemma 7: If , in such a way that ,

then the quantity of the AFP scheme converges as

(35)

in mean-squared sense.
Proof: See Appendix I.

In the large system limits, of the AFP scheme scales
linearly with and exponentially with the channel use index

. Denote the feedback update periods of the AFP scheme for
the effective SNR and capacity difference functions in the large
system limit as and , respectively. Then, Lemma
7 enables us to characterize feedback update period bounds for
the effective SNR and capacity in closed form and show that two
performance criteria are closely related each other.

Theorem 4: As , , in such a way that
and , the feedback update periods

and for the AFP scheme ensuring greater average ef-
fective SNR and capacity performance than the MFP scheme
converge to a bound

(36)

in mean-square sense.
Proof: See Appendix J.

The inherent dependency on the feedback update period
with the capacity loss (which is studied in Section III-D) van-
ishes as , , , and the bound converges to the same
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Fig. 4. Maximum achievable feedback update period of the AFP scheme for
� � � and � � �� �� ��.

bound as the effective SNR criterion. This verifies that the intu-
ition that the two performance metrics are asymptotically equiv-
alent.

V. NUMERICAL SIMULATIONS

In this section, we provide numerical results to corroborate
the theorems in the previous sections. These results are from
Monte Carlo simulations designed to evaluate the performance
of the AFP and MFP schemes. As we have specified in (3),
the correlation coefficient was generated using Jakes’ model,
i.e., . To provide a meaningful comparison, we
used practical parameters from IEEE Standard 802.16m [26].
In [26], the closed-loop operation assumes a terminal speed of
3 km/h with a CSI feedback interval of and carrier
frequency of . We use the above system parame-
ters to simulate. Then, the temporal correlation variable varies
from 0.9987 to 0.8721 as the terminal speed varies from 1 km/h
to 10 km/h.

Fig. 4 displays the maximum feedback update period using
(9) with , , and . The
temporal correlation variable varies from 0.86 (11 km/h) to
0.9987 (1 km/h). As can be seen from Fig. 4, as approaches 1,
the growth rate of the maximum feedback update period using
the effective SNR criterion increases exponentially. When

and in Fig. 4, the AFP
scheme can reuse the initial 6 bits of feedback up to 13 channel
uses (i.e., the average feedback overhead is 0.46 bits/channel
use), while assuring that the average effective SNR for the
AFP scheme is larger than that of the MFP scheme. When

, the AFP scheme can send back 6 bits of
CSI every 106 channel uses (i.e., the average feedback overhead
is 0.06 bits/channel use). Note that in any case, the average
feedback overhead of the MFP scheme is 4 bits/channel use.
The Correlation Coefficient Criterion in Section III-B reveals
that the AFP scheme is initiated and ensures a lower average
feedback overhead and greater effective SNR gain than the
MFP scheme, if , when . In the same

Fig. 5. Upper bound and lower bound in (21) with � in (20) for different
average feedback overhead using � � �� �, � � �, and � � � .

manner, when , the feedback update control is
initiated when .

Fig. 5 displays the upper bound and lower bound in (21)
and the feedback rate in (20) with different values of

and for .
The values are chosen to satisfy due to lemma
3. As can be seen from the figure, for and ,
if the AFP scheme with in (20)
shows improved performance than the MFP scheme with

. Similarly, for and , when
the proposed scheme shows benefits in terms

of the average feedback overhead and performance compared to
the MFP scheme with . As shown in Fig. 2, when

, gives unintended large value of . As can
be seen from the next simulation study, finding the minimum
codebook size in (23) gives more practical insights than

.
Fig. 6 displays (22) and in (23) for

and . Note that for have been
plotted by setting . For the case, Fig. 6 shows

satisfies for .
For the case, satisfies for

. As tends to one, Fig. 6 demonstrates
that is roughly unconstrained. The feedback bound ,
which guarantees the feedback update period , is inversely pro-
portional to . As investigated in Section III-C, is not
affected by the change of at . However, almost
linearly scales with when . If and ,

in (22) and in (23) return and
. Then, Theorem 3 indicates that with these pa-

rameters, the AFP scheme using and is ben-
eficial over the MFP scheme with when .
In addition, from the Correlation Coefficient Criterion, when

, we can choose satisfying (12) so that the
average feedback overhead of the AFP scheme is less than or
equal to . For the case, the
AFP scheme with outperforms the MFP scheme
with when . In addition, the Correlation
Coefficient Criterion indicates that the AFP scheme can always
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Fig. 6. Codebook sizes � in (23) and � in (22) ensuring � � � for
� � �.

Fig. 7. Effective SNR performances for the MFP and AFP schemes where the
feedback update period is determined by the upper bound in (9).

be operated so that the average feedback overhead is less than
or equal to when .

Fig. 7 displays the average effective SNR across channel use
index. and are chosen to meet the
conditions in (22) and (23), respectively (with ). The feed-
back update periods of the AFP scheme are set by the maximum
available update period in (9). As is shown in Fig. 7, a feedback
update control criterion characterizes the feedback update pe-
riod required to guarantee a larger effective SNR gain and lower
feedback overhead rate than the MFP scheme. Fig. 8 displays
the achievable throughput evaluated at each channel use index
where the feedback update period is determined by (31). The
bound in (31) is an approximation, but it gives insight into the
feedback update period allowed. Figs. 7 and 8 reveal that as
increases, the AFP scheme achieves a greater performance gain
with significantly reduced average feedback overhead.

In this simulation study, we investigated the convergence re-
sult in Theorem 4. For this purpose, Fig. 9 demonstrates the

Fig. 8. Achievable throughput performance for the MFP and AFP schemes
where the feedback update period is determined by the upper bound in (31).

Fig. 9. Convergence of feedback update period as � , � , � ��� main-
taining � � � �� and � � � �� �� � ������ �� 	
����.

maximum allowed feedback update period in Theorem 1 across
different numbers of transmit antennas for and

maintaining and
and check that the bound in (9) converges to (36). In Fig. 9, the
label “Theorem” denotes the maximum feedback update period
in (36). Fig. 9 displays the mean-square convergence of (9) to
the limiting bound in (36) for (or 7 km/h) and indi-
cates that the convergence is indeed fast.

In this simulation study, the normalized effective SNR per-
formance of the AFP scheme is compared to differential feed-
back schemes in [8] and [14] for beamforming system.
To quantize the initial state we use a 4 bits of Grassman-
nian line packing codebook [4] for [8], [14] and after the first
feedback, a 4 bits Gaussian vector quantization (VQ) codebook
[8] and 4 bits rotation codebook [14] are used to feed back the
channel variation. Gaussian VQ is used to quantize the angular
velocity matrix to construct points on the geodesic lines de-
fined on Grassmannian manifold in [8]. The length of the arc
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Fig. 10. Effective SNR performances for the AFP scheme, the MFP scheme,
and differential feedback approaches in [8] and [14].

of geodesic is specified by a parameter which impact the
performance of the algorithm. Eight order polynomial in [8] is
employed to provide appropriate value with respect to the ter-
minal speed. Fig. 10 shows the normalized effective SNR per-
formance of the AFP scheme, the MFP scheme, and differential
feedback schemes in [8], [14] with (or 7 km/h). For
the AFP scheme, and are used to give compat-
ible performance to [8], [14]. The values and
are chosen based on Theorem 3. The average feedback overhead
of the AFP scheme is 2.5 bits/channel use whereas the MFP
scheme and differential strategies correspond to 4 bits/chan-
neluse. The AFP scheme outperforms Gaussian VQ for the first
two channel instances and shows better performance than rota-
tion codebook only for the first channel instances. The gain of
the differential feedback comes from the refinement algorithm
operating in every channel instances and consecutive feedback
to refine quantizer for every channel uses. The merits of the AFP
scheme are its simplicity which does not require prediction and
consecutive feedback for every channel uses.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we derived a feedback reuse criterion for a lim-
ited feedback beamforming system. By computing the closed
form expression of the average effective SNR, the feedback up-
date period of the AFP scheme was identified. Based on this
statistic, we determined how the feedback update period and the
required codebook size should scale with the amount of tem-
poral correlation. Through an asymptotic study, it was shown
that the bounds on the feedback update period for the effective
SNR and capacity performance converge to the same bound.
From the simulation study, the proposed feedback update con-
trol framework showed improved performance with reduced av-
erage feedback overhead. These results reveal the necessity of
taking temporal correlation into account during feedback de-
sign and demonstrates that infrequent high resolution feedback
is preferable to frequent low resolution feedback if the terminals
are not too mobile

The channel was assumed to follow a block fading model with
temporally correlated blocks. Using an error-free and zero-delay
feedback channel, we compared the MFP and AFP schemes.
Even if we change the block fading assumption so that channel
remains the same for a few symbols (say symbols), the results
in this paper do not change as long as our interest is in comparing
the MFP and AFP schemes at the last channel use (in order
to guarantee that AFP gives average effective SNR enhance-
ment at every channel use). The only difference comes from the
scaling factor where the average feedback overheads of the
MFP scheme and AFP scheme become and ,
respectively, whose relative relation for comparing the perfor-
mance does not change.

We assumed the feedback is only available at every
channel instances for the AFP scheme. We did not assume any
additional feedback to the transmitter between and

. If a prediction scheme operating at the transmitter
is employed so that after the first transmission, the transmitter
can predict a good beamformer using additional feedback side
information at , then using a refined beamformer from
time to may give better performance
than simply using from to . There are
many prediction approaches such as [7]–[9] to refine the initial
quantizer using a small amount of feedback. Incorporating
a decent prediction algorithm is an interesting topic for future
research on feedback update control.

Finally, one limitation of the work is that we considered
only the feedback update control problem for single user beam-
forming. It is well known that MIMO channel can increase sum
capacity by supporting multiple-users for downlink. Similar
analysis may be directly applicable to multi-user beamforming
because in that case the interest also is in maximizing the inner
product between the channel vector and the quantized channel.
In the general multiuser case, the feedback update period
and necessary feedback rate will be determined by the most
mobile user. Developing a user scheduling framework that uses
feedback and takes into account the temporal correlation of the
channel is an interesting topic for future work.

APPENDIX A
PROOF OF LEMMA 1

Trivially, at , the average effective SNR of the AFP
scheme is given by . At , we have

(37)

where (37) follows from the facts that and are independent
and have zero mean, and thereby the expectations of all cross-
terms become . Similarly,
when

(38)

(39)



KIM et al.: FREQUENT LOW RESOLUTION FEEDBACK 1665

where (39) is obtained by plugging (37) in (38). Then, it is
straightforward, for a general

Noting the independence between the directions and the ampli-
tudes of and and using the fact that the amplitudes
satisfy yield

(40)

Now, we need to quantify each expectation on the right
hand side (r.h.s.) of (40). Since and are independent
and is isotropically distributed in , the quantity

is beta distributed with parameter 1 and whose
mean is given by . Applying (6) with to the first term
on the r.h.s. of (40) and using
lead to

This concludes that proof.

APPENDIX B
PROOF OF (8)

With the beta function equality
, the quantity can

be equivalently rewritten by

(41)

(42)

The equality in (41) follows from the fact .
Note that (42) gives a recursion formula between quantization
errors incurred by the codebook size and codebook size
Now, recursively applying (42) gives (8).

APPENDIX C
PROOF OF THEOREM 1

Plugging (6) and (7) (in Lemma 1) into the average effective
SNR loss in (5) gives

(43)

The formula (43) indicates that is a monotoni-
cally decreasing function of because

and due to (8).
Thus, the optimization problem to find the maximum update
period of the AFP scheme guaranteeing greater effective SNR
gain than the MFP scheme is formulated by finding such
that1

(44)

Then, the maximum feedback update period is .
Manipulating (43) with the constraint yields

(45)

Since is a monotonically decreasing function of , the
optimal in (44) is the maximal positive integer satisfying (45),
i.e.,

(46)

where denotes the flooring function to the nearest non-
negative integer. Since (46) is the achievable maximum channel
index, this characterizes the bound on the feedback update pe-
riod in (9). This concludes the proof.

APPENDIX D
PROOF OF LEMMA 4

With the objective function , consider an optimization
problem

(47)

To solve this, we need to examine the behavior of . Dif-
ferentiate once with respect to yields

(48)

Equating and after some algebraic manipula-
tion, the equality uniquely determines

(49)

We claim (49) is the maximizer of . In order
to verify this, we first observe that ,

1One point to note is that the focus in (44) is on the largest feedback period
such that infrequent high resolution feedback (the AFP scheme) outperforms
frequent low resolution feedback (the MFP scheme). In this way, we can charac-
terize the feedback update period � such that the AFP scheme yields larger a av-
erage effective SNR than the MFP scheme for every channel uses. It is possible
to alternatively characterize the feedback update period �, using the average ef-
fective SNR averaged over all � channel uses. However, characterizing � with
this averaged performance metric does not guarantee that the AFP scheme out-
performs the MFP scheme for every channel uses.
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and for
where the first inequality is due to the fact

that in (19) and the last
inequality comes from (16) and Lemma 4. Thus, if

(50)

the unique zero differential point in (49) is the maximizer. Oth-
erwise, there is no single zero differential point. The condition
in (50) can be readily seen by plugging in (48) and ob-
serving

The facts and
prove the claim. This concludes the proof.

APPENDIX E
PROOF OF THEOREM 2

We first show the upper bound in (21). Note that with
in (20), in (19) is always smaller than or equal to

in (18). Thus, if ,
is free. Equating gives

(51)

Factoring out from (51) to extract the bound on
is not tractable. Other than directly solving (51), we

use the first order condition found in Lemma 4. Equating
in (48) yields an equality

(52)

Plugging (52) in (51) and solving for gives the upper
bound in (21). The lower bound follows from the fact that given

, the condition is equivalent to
. This concludes the proof.

APPENDIX F
PROOF OF THEOREM 3

From Theorem 1, the condition guaranteeing is equiv-
alent to

(53)

Since we are interested in finding the minimum (i.e., )
satisfying (53), the upper bound in (14) is applied to

in (53), which gives

(54)

After some algebraic manipulation, it is straight forward from
(54) to show that the sufficient condition for ensuring

is obtained by

(55)

where denotes the ceiling function to the nearest nonnega-
tive integer. Note that the expression in (55) is only valid given

(56)

which is the condition that ensures the denominator inside of the
in (55) is negative. Accordingly, by applying the lower

bound in (14) to in (56), a sufficient condition for the max-
imum denoted by satisfying (56) is obtained by

(57)

This concludes the proof.

APPENDIX G
PROOF OF LEMMA 5

We first check a convergence of

(58)

at a critical point. If in is substituted by
, can be rewritten in terms of by

. By the definition of exponential function
(i.e., ), when is set as ,
we have

(59)
Indeed, (59) implies .

Now, the limiting behaviors of when
and as tends to infinity are of interest.
Dealing with a bound of the distribution function pro-
vides tractable way to characterize for
and .

Lemma 8: For and , the distribution
function in (58) is bounded by

(60)

Proof: For any real number , natural logarithm
inequality gives . Multiplying

to this inequality and rasing the base of
gives

(61)

If (or ), the term in (58) always
lies in . Thus, replacing in (61) by does not
change the inequality in (61).
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: The convergence of for
with as , with

fixed , is evaluated by examining the lower bound
in (60) at

(62)

where (62) follows from the fact that and
. Thus, the convergence in (62) implies

: In this case, we characterize convergence
of at with .
Investigating the upper bound in (60) at

reveals

(63)

where (63) is due to . Thus, when ,
the convergence in (63) implies

Combining three convergence results for ,
, and leads to (33). This concludes

the proof.

APPENDIX H
PROOF OF LEMMA 6

To show (34), we first characterize quantities
and .

The first-order moment is broken into
two integrals

(64)

Taking while maintaining to both sides
of (64) gives

(65)

(66)

(67)

where the equality in (65) follows from the fact that since
is dominated by 1 (i.e., ) for all

and converges to (Lemma 5) for all ,
by using the dominated convergence theorem [27], changing
the order of and does not change the result. The equality
in (66) is due to Lemma 5 and the fact that the value at

is negligible in computing ,
because the measure of a single discontinuity of in

is negligible.
Likewise, is broken into two integrals as

(68)

(69)

where (68) is obtained by integration by parts. Then, taking
limits to both sides (69) gives

(70)

Consequently, from (67) and (70), as , while
, the variance of converges as

This establishes in the mean-square sense,
which implies .

APPENDIX I
PROOF OF LEMMA 7

First, an expression of is determined,
and by using Lemma 6, the convergence result in (35) is verified.

Consider the effective SNR at .

(71)

where denotes a real part of . Dividing (71) with
gives

(72)

Now, we take , to both sides of (72). The first term
on the RHS of (72) is led to

(73)
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where , because
and almost surely. Similarly,

for the second term on the RHS of (72), taking ,
gives

(74)

where (74) follows from the fact that the quantity
is beta distributed with whose mean is
and variance is . Thus, as goes
infinity the mean and the variance converges to 0. This asserts

. For the third limit in (72), we have

(75)

where (75) is due to the inequality

and the fact that

. Combining (73), (74), and
(75) yields

(76)

Now, with the same procedure, for , we have

and taking leads to

(77)

where (77) is due to (76). Now, it is straight forward for a general
,

(78)

where (78) follows from Lemma 6. This concludes the proof.

APPENDIX J
PROOF OF THEOREM 4

For the capacity loss in (26), the optimization problem finding
is expressed as

where is given by

Then, given and , Lemma 6 and
Lemma 7 leads to

Thus, yields

(79)

Manipulating (79) gives the maximum available channel index
as

(80)

This gives the bound on the feedback update period
in (36).

For the effective SNR criterion, by taking , ,
to (46), we can directly obtain

(81)

which is equivalent to (80). This results in the same bound for
and . This concludes the proof.
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